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1 Introduction

In this project, we are going to perform

analysis on videos, in particular, news broad-

cast. There are various tasks associated with the

video analysis, such as shot detection, feature

detection and recognition, and feature tracking

between frames. Video processing has been a

popular area in computer vision for a long time.

In the project, we are going to employ novel

ideas from the past few years to complete our

analysis.

2 Shot Detection

Shot detection is crucial in video process-

ing, it is a useful helper for other computer vi-

sion operations like face detection in consecu-

tive frames[10]. I will perform three shot detec-

tion algorithms in 2.1 on the given video clips

[5].

2.1 Method

The first two algorithms: Average Intensity

Measurement 2.1.2 and Color Histogram Com-

parison 2.1.3, are very widely used in shot de-

tection. They in general compares the color dis-

tribution of two images, which is robust to cam-

era motion. The third method 2.1.4 is a rela-

tively novel measurement, instead of collecting

pixel color information, it focuses on object fea-

tures.

Figure 1: case where traditional color histogram
doesn’t work in shot detection

2.1.1 Adaptive Thresholding

Before describing the details of the methods,

I would talk about out threshold policy. In this

project, the threshold policy we choose is called

Adaptive Thresholding [14]. There are two hy-

perparameters in this thresholding, W denotes

the window size and by default is an odd integer.

Tc is a constant. For each dissimilarity score at

time slot t, the threshold is

mt = max(µleft+Tc
√
σleft, µright+Tc

√
σright)

µleft, σleft is calculated from the dissimilarity

values within interval [d−W/2, d), and the sim-

ilar manner for µright, σright.

2.1.2 Mean Intensity Measurement (MIM)

This method is described briefly in [13],

which computes the average intensity of each

image channel, and sum the difference over all

channels with the values of the next frame.

2.1.3 Color Histogram Comparison (CHC)

The traditional color histogram described in

[13] takes intensity values at gray-scale, and

calcutes the entire image intensities into one

histogram. While we think this may not be ro-
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Figure 2: the red box moves between frames

bust, Figure 1 is the case. If we take color

histogram of these two images, the difference

would zero. Our method slightly changes the

traditional one. We first take color histogram of

all three channels. Instead of taking the entire

image size as the input, we make a small patch

with size 16 to gather color information.

2.1.4 Edge Change Ratio (ECR)

The edge change ratio [11] is a method focuses

more on the feature information within the im-

age. Figure 2 shows a case that a box moves

between frames but within a certain bound-

ary. ECR tracks how edge features move be-

tween frames. This needs pre-processing on two

frames.

Implementation

• We first calculate edge features (our im-

plement applies canny edge with σ = 5)

of both images, denoting both the im-

age It, It+1, and processed canny edges

Ct, Ct+1. Here we used OpenCV Canny

Edge Detection functons.[2]

• Then apply dilation on both edge feature

D−
t , D

−
t+1, then we calculate the inverse

Dt = 1−D−
t

Dt+1 = 1−D−
t+1

• Take binary operations between Ct, Dt+1

and Ct+1, Dt. A binary operation is de-

fined as binary(A,B) = A∗B whenA,B

only have values zero and one.

ECout =
binary(Ct, Dt+1)

Ct

ECin =
binary(Ct+1, Dt)

Ct+ 1

• The final edge change ratio is

ECR = max(ECin, ECout)

2.2 Evaluation

[R:Recall, P:Precision, F1: F Score]
[C:Correct, M:Missed, F:False]

Clip C M F R P F1
#clip 1 1 0 2 1.00 0.33 0.50
#clip 2 8 0 2 1.00 0.80 0.89
#clip 3 4 2 9 0.67 0.40 0.50

Table 1: metrics of Mean Intensity Measurement
over three clips

Clip C M F R P F1
#clip 1 1 0 2 1.00 0.33 0.50
#clip 2 8 0 7 1.00 0.53 0.70
#clip 3 4 2 8 0.67 0.33 0.44

Table 2: metrics of Color Histogram Comparison
over three clips

Clip C M F R P F1
#clip 1 1 0 0 1.00 1.00 1.00
#clip 2 6 2 0 0.75 1.00 0.86
#clip 3 5 1 3 0.83 0.62 0.71

Table 3: metrics of Edge Change Ratio over three
clips

The graph in Figure 3 4 5 shows the per-

formance of three measurements respectively.

The yellow vertical spans are the true video shot

detections, where those thin lines indicate the

hard cuts and wide spans indicate dissolve tran-

sitions. We also have the following tables 1 2

3 show the metrics of the three algorithm. The

mathematical expressions for Recall, Precision

and F measure (F1) [9] are

Recall =
Correct

Correct+Missed

Precision =
Correct

Correct+ False
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Figure 3: performance of Mean Intensity Measurement

Figure 4: performance of Color Histogram Comparison

Figure 5: performance of Edge Change Ratio

F1 =
2×Recall × Precision
Recall + Precision

Intensity based algorithms tend to have a

higher Recall and low Precision, since the given

video clips[5] generally have frequently inten-

sity changes, the algorithms capture both cor-

rect shot boundaries and intensity noise. On

the other hand, the feature based algorithm

(ECR) generally out performs the other two al-

gorithms. Observe that the worst performance

of the three clips[5] is the clip 3. This is be-

cause a rapid changing comic scenes (Marvel

comic), the ECR is not robust to video clips that

have low sampling rate, since in this case the

object has a larget movement gap which causes

the False detections.

3 Feature Detection

Feature detection field has been rapidly im-

proved as the Deep Learning concept came out.

Some deep learning algorithms now have ex-

traordinary performances. However, there are

still some widely used techniques that are non

deep learning based which also have good per-

formances. For face detection, we are going to

use Haar Cascade Classifier[12], and for logo

detection, we adopt a method that learnt from
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Figure 6: missed face detection

lecture materials.

3.1 Face Detection

We uses Haar Cascade Classifier[12] as our

face detector. The algorithm first collects a large

number of features, we need to figure out which

features among all of these best determine a

face. And this is done by using Adaboost, a

collection of weak learner. All the features are

stacked together with different amount, from

less to more, grouped into the classifier. The

algorithm is also fast at real time because of the

Cascade concept, it immediately discard a slid-

ing window in detecting when it fails at any po-

sition inside the classifier. Though in terms of

the performance, CNN is better, but it is more

efficient in training and has lighter model. So

for simple task such as face detection, Haar Cas-

cade has always been a good choice.

3.1.1 Face Detection Results

From Table 4, we can see that the Haar Cas-

cade Classifier has better Precison than Recall.

This is due to the Cascade property discussed

previously. In contrast, the performance in the

first two clips is better than the last one, espe-

cially for Recall measurement. This is because

the angle that people facing at in clips 3 is not

towards the camera like in Fig 6. So the Haar

feature filters are not able to apply on these case

variations. Even though in general people has a

common front face feature, the style on each left

or right may vary. Unlike convolutional neu-

ral networks, which is of high freedom to per-

form optimal kernels (as weights to train), Haar

features are manually determined, thus with a

tighter limitation.

[R:Recall, P:Precision, F1: F Score]
[C:Correct, M:Missed, F:False]

Clip C M F R P F1
#clip 1 253 45 10 0.85 0.96 0.90
#clip 2 373 73 4 0.84 0.99 0.91
#clip 3 329 165 12 0.67 0.96 0.78

Table 4: metrics of Haar Cascade Classifier over
three clips

3.2 Logo Detection

The method for Logo detection we used is

applying the knowledge we learnt from class:

Scale Invariant Feature Transform (SIFT) [7],

match keypoints with RANSAC [4], and apply

homography, mapping the Logo to the location

in the given video clips [5].

The advantage of these sequence of oper-

ations over machine learning is that it only

requires the minimum amount of data (1 is

enough), and fast to apply, without the training

process. While the drawback is also inevitable,

which the SIFT [7] algorithm is very sensitive to

noise. In addition, the algorithm is not prepared

for multiple appearances of the same Logo. As

shown in Fig 7, the Logo of NBC news is half-

transparent, so the detection result is not opti-

mal. While in a relatively stable, less noise en-

vironment Fig 8, the detection is more accurate.

By using this method, though we are unable

to improve Recall, the it is able to improve Pre-

cision. This is done by pruning bad mapping

points, such us negative width and height, or

points that are mapped out of the image, we

abandon the boundary box in these case.
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Figure 7: false Logo detection & positive face de-
tection

Figure 8: positive Logo detection & face detection

3.2.1 Logo Detection Evaluation

[R:Recall, P:Precision, F1: F Score]
[C:Correct, M:Missed, F:False]

Logo C M F R P F1
nbc news 92 76 10 0.55 0.90 0.68
nbc excl 96 10 9 0.91 0.91 0.91
the voice 57 0 0 1.0 1.0 1.0
clevver 77 36 0 0.68 1.0 0.81

flick 22 8 0 0.73 1.0 0.85
Table 5: metrics of Logo Detection over all Logos

The outcome varies between Logo types.

Like the one showed in Fig 8, the type of Logo

with solid background (i.e Logo has high opac-

ity) tend to be robust in detection. In this

method, the transparency of the Logo intro-

duces noice in position detection.

4 Face Tracking

Perform face tracking on video or real time

camera helps gain both spatial and temporal in-

formation. The most difficult part lies on the as-

signment problem. Most algorithm perform as-

signment on consecutive frames. We have come

up a simple method that performs tracking even

between non-continues frames and shots.

4.1 Algorithm

Algorithm 1 Greedy Detection Tracking
1: initiate a MAX HEAP
2: for object in 1st frame do
3: MAX SCORE = 1
4: SECOND MAX = 0
5: for object in 2nd frame do
6: calculate similarity score
7: if score > MAX SCORE then
8: SECOND MAX = MAX SCORE
9: MAX SCORE = score

10: end if
11: end for
12: if RATIO > THRESHOLD then
13: prune the pair
14: else

push pair to heap
15: end if
16: end for
17: while MAX HEAP not empty do
18: obj1, obj2 = MAX HEAP.pop
19: if obj2 already belongs to a tracking then
20: continue
21: end if
22: if neither obj1 nor obj2 belongs to a tracking then
23: initiate new tracking with obj1 and obj2
24: end if
25: if obj1 belongs to a track then
26: add obj2 to the same track
27: end if
28: end while
29: LEFT OVER = [object in 1st frame not get paired]
30: carry LEFT OVER to the next round

The algorithm starts from the very first two

consecutive frames, the process it similar to find

the matching in SIFT matching[7].

4.2 Similarity Function for tracking

The essential parts of performing an accurate

object tracking are detection and similarity mea-

surement. In this subsection, we talk about how

we set up the similarity function. In order to

determine if two objects are very similar, we fo-

cus on both color distribution and feature infor-

mation. To tackle color problem, we chose the

color histogram difference measurement, over

all three channels, this give a detailed color dif-

ference of two images. For feature compari-

son, we chose Histograms of Oriented Gradi-

ents (HOG).

To compute HOG, we first calculate both the
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magnitude and the direction of the gradients:

|∇I(x, y)| =
√
I2x + I2y

θ(x, y) = arctan(Iy/Ix)

We take a 2× 2 cell with each cell size of 8× 8

pixel blocks sliding over the image, quantizing

the directions into 9 bins with 20 degree incre-

ment. The gradient with larger magnitude votes

into the bin. Then normalize 4 of such blocks

together (2×2). So, in total, our similarity func-

tion S with Color Histogram difference CHD

and Histogram of Oriented Gradients difference

HOGD is:

S(I1, I2) =
1

HOGD(I1, I2) + CHD(I1, I2) + 1

4.3 Performance

The algorithm works better in situation where

number of people in the same scenes is small.

Our algorithm can tackle discontinuous shot

tracking (e.g identify and track people in 1st

shot scene and 3rd scene). For frames that in-

volves many people, it usually swaps the tack-

ing suquence, like Fig 9 10

5 Gender Classification

Automated gender recognition is important in

many applications such as biometric and human

computer interaction. As a result, classifying

gender from face images becomes an important

research area. We tried two methods to perform

this task.

5.1 ResNet18

Deeper neural networks turn out to be more

powerful theoretically, but in practice they suf-

fer from the degradation problem and are harder

Figure 9: false Logo detection & positive face de-
tection

Figure 10: positive Logo detection & face detection

to train due to vanishing gradient. Residual

blocks are proposed to solve this problem by us-

ing shortcut connections.

We originally trained a residual network–

Resnet18. This is an end-to-end approach, that

we feed the model with an image and would

directly obtain the class of it. Data are sepa-

rated into training data and validation data in

order to see the performance. Our neural net

was trained with an Adam optimizer [6] and

cross entropy loss. To fasten the training pro-

cess, the model was trained with a minibatch of

size 32. However, after 25 epochs, the training

accuracy approached 100%, but validation ac-

curacy is only around 80%, even after adding

one dropout layer and applying weight decay.

This implies that our model faces the problem

of overfitting.

We thought this problem can be alleviated

by employing more regularization techniques.

However, training the neural net took a large

amount of time. In my experiment, training 30

epochs requires more than 2 hours. Due to the

time concerns, we didn’t do lots of experiments
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on it.

For further improvement, experiments such like

cropping part of the image before feeding it to

the neural net are considered. Also, represent-

ing the image in lower dimensional space may

help since it decreases the number of parameters

in the model.

5.2 Histogram of Oriented Gradient
Feature

Another method we tried is simply extracting

features from images and then feeding the fea-

tures into a classifier. In real world, people may

find that outline of faces contributes a lot to gen-

der recognition from facial image. In order to

represent the edge information, we choose the

Histogram of Oriented Gradient[3] as the de-

scriptor.

According to the paper [3], classic HOG fea-

tures are obtained by normalizing the image,

computing the gradient of each pixel, creating

a histogram of edge directions and doing block

normalization. One of the main contributions

of the paper is that they use dense grid of cells,

allowing overlapping both horizontally and ver-

tically when sliding the windows. Also, for bet-

ter accuracy, they apply local contrast normal-

ization to each block before sending them to the

classifier.

In my implementation, each individual his-

togram has 20 signed bins, with an interval

length of 18.

Since people could tell the gender of a person

from a black-white face image, I transformed

the image to gray scale before extracting the

HOG features. The only preprocessing we per-

form is image resizing. Observe that the resolu-

tion of image can affect the extracted edge fea-

ture. Images with low resolution contain mainly

the information of position and coarse edges

while large scale images include more of fine

edges. Once a face is detected, it is cropped and

resized to four scales—16 × 16, 32 × 32, 64 ×
64, 128× 128. Then the feature is extracted us-

ing a window of size 2×2, 4×4, 8×8, 16×16

respectively, either with or without overlapping.

After obtaining the input data, we fit a svm.SVC

classifier to it and perform classification. [8].

5.2.1 Result

After comparing the accuracy scores on test

data, I chose the classifier trained by 64 × 64

images with overlapped windows. Most faces

in first two clips are classified correctly. Good

results are in Fig 11, Fig 12. There are a few

Figure 11: Correct classifications from clip1.

failures shown in Fig13, Fig 14 The top exam-

ple in 13 could be caused by the change of il-
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Figure 12: Correct classifications from clip2.

lumination within the face. This may give us

a wrong edge which would influence the result.

The potential reason for the other two failures

could be the vague outlines.

But when applied the trained classifier to clip3,

we obtained low precision with all classifiers. I

found the outlines of faces in clip3 are not as

clear as those in clip1 and clip2. This could

be one possible reason for the failure, since the

classifier is trained on edge features. Another

possible reason is that faces in the training data

set are mostly front faces, but in clip3, the man

in the last frame bows his head. In order to

improve the generalization of the classifier, we

could include more images with various head

poses in the training set.

5.2.2 Future Work

• As previously mentioned, the classifier

may fail when faces are not perfectly front

or edges are not clear. It could also fail

when there exists a partial mask in the face.

One improvement I could make is to gather

Figure 13: Bad results from clip1.

Figure 14: Bad result from clip2.

training images with different head poses

and augment the input by smoothing the

faces or applying masks on randomly cho-

sen areas. Rotating or translating the train-

ing data may also help.

• The method has not yet been tested on

other datasets. So, future work includes

testing it on larger test sets.

• Alexandre and Lu (2010) [1] shows that

decision fusion improves the result signif-

icantly. Instead of training a single clas-

sifier, this paper proposed to train various

classifiers using different image scales or

different features, predict the gender sepa-

rately and make final decision via major-
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ity vote. I think above approach can be

included for the future improvement since

given a specific image, some features may

be easy to obtain while others are not.

We’re interested of extracting geometric

face features such as the relative position

of eyes, nose and lip, as well as texture fea-

tures shown in the paper.

• Feature extraction process consumes a lot

of time. This could be shorten by code op-

timization

6 Conclusion
In this project, we found that the traditional

SVM classifier with facial feature performs well

when the face edges are clear but with a large

possibility to fail when the illumination varies.

Also, the resolution of the face image would af-

fect the classification results.

7 Contribution
Hirotaka Ishihara

• 3 shot detection

• face detection

• logo detection

• face tracking and similarity function

• all code above

Yichun Zhang

• gender classification
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